

Network Working Group J. Case

Request for Comments: 1067 University of Tennessee at Knoxville

 M. Fedor

 NYSERNet, Inc.

 M. Schoffstall

 Rensselaer Polytechnic Institute

 J. Davin

 Proteon, Inc.

 August 1988

 A Simple Network Management Protocol

 Table of Contents

 1. Status of this Memo 2

 2. Introduction .. 2

 3. The SNMP Architecture 4

 3.1 Goals of the Architecture 4

 3.2 Elements of the Architecture 4

 3.2.1 Scope of Management Information 5

 3.2.2 Representation of Management Information 5

 3.2.3 Operations Supported on Management Information 6

 3.2.4 Form and Meaning of Protocol Exchanges 7

 3.2.5 Definition of Administrative Relationships 7

 3.2.6 Form and Meaning of References to Managed Objects .. 11

 3.2.6.1 Resolution of Ambiguous MIB References 11

 3.2.6.2 Resolution of References across MIB Versions...... 11

 3.2.6.3 Identification of Object Instances 11

 3.2.6.3.1 ifTable Object Type Names 12

 3.2.6.3.2 atTable Object Type Names 12

 3.2.6.3.3 ipAddrTable Object Type Names 13

 3.2.6.3.4 ipRoutingTable Object Type Names 13

 3.2.6.3.5 tcpConnTable Object Type Names 13

 3.2.6.3.6 egpNeighTable Object Type Names 14

 4. Protocol Specification 15

 4.1 Elements of Procedure 16

 4.1.1 Common Constructs 18

 4.1.2 The GetRequest-PDU 19

 4.1.3 The GetNextRequest-PDU 20

 4.1.3.1 Example of Table Traversal 22

 4.1.4 The GetResponse-PDU 23

 4.1.5 The SetRequest-PDU 24

 4.1.6 The Trap-PDU 26

 4.1.6.1 The coldStart Trap 27

 4.1.6.2 The warmStart Trap 27

 4.1.6.3 The linkDown Trap 27

 4.1.6.4 The linkUp Trap 27

Case, Fedor, Schoffstall, & Davin [Page 1]

�

RFC 1067 SNMP August 1988

Page 1 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 4.1.6.5 The authenticationFailure Trap 27

 4.1.6.6 The egpNeighborLoss Trap 27

 4.1.6.7 The enterpriseSpecific Trap 28

 5. Definitions ... 29

 6. Acknowledgements 32

 7. References .. 33

1. Status of this Memo

 This memo defines a simple protocol by which management information

 for a network element may be inspected or altered by logically remote

 users. In particular, together with its companion memos which

 describe the structure of management information along with the

 initial management information base, these documents provide a

 simple, workable architecture and system for managing TCP/IP-based

 internets and in particular the Internet.

 This memo specifies a draft standard for the Internet community.

 TCP/IP implementations in the Internet which are network manageable

 are expected to adopt and implement this specification.

 Distribution of this memo is unlimited.

2. Introduction

 As reported in RFC 1052, IAB Recommendations for the Development of

 Internet Network Management Standards [1], the Internet Activities

 Board has directed the Internet Engineering Task Force (IETF) to

 create two new working groups in the area of network management. One

 group is charged with the further specification and definition of

 elements to be included in the Management Information Base (MIB).

 The other is charged with defining the modifications to the Simple

 Network Management Protocol (SNMP) to accommodate the short-term

 needs of the network vendor and operations communities, and to align

 with the output of the MIB working group.

 The MIB working group has produced two memos, one which defines a

 Structure for Management Information (SMI) [2] for use by the managed

 objects contained in the MIB. A second memo [3] defines the list of

 managed objects.

 The output of the SNMP Extensions working group is this memo, which

 incorporates changes to the initial SNMP definition [4] required to

 attain alignment with the output of the MIB working group. The

 changes should be minimal in order to be consistent with the IAB's

 directive that the working groups be "extremely sensitive to the need

 to keep the SNMP simple." Although considerable care and debate has

 gone into the changes to the SNMP which are reflected in this memo,

Case, Fedor, Schoffstall, & Davin [Page 2]

�

RFC 1067 SNMP August 1988

 the resulting protocol is not backwardly-compatible with its

 predecessor, the Simple Gateway Monitoring Protocol (SGMP) [5].

 Although the syntax of the protocol has been altered, the original

 philosophy, design decisions, and architecture remain intact. In

Page 2 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 order to avoid confusion, new UDP ports have been allocated for use

 by the protocol described in this memo.

Case, Fedor, Schoffstall, & Davin [Page 3]

�

RFC 1067 SNMP August 1988

3. The SNMP Architecture

 Implicit in the SNMP architectural model is a collection of network

 management stations and network elements. Network management

 stations execute management applications which monitor and control

 network elements. Network elements are devices such as hosts,

 gateways, terminal servers, and the like, which have management

 agents responsible for performing the network management functions

Page 3 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 requested by the network management stations. The Simple Network

 Management Protocol (SNMP) is used to communicate management

 information between the network management stations and the agents in

 the network elements.

3.1. Goals of the Architecture

 The SNMP explicitly minimizes the number and complexity of management

 functions realized by the management agent itself. This goal is

 attractive in at least four respects:

 (1) The development cost for management agent software

 necessary to support the protocol is accordingly reduced.

 (2) The degree of management function that is remotely

 supported is accordingly increased, thereby admitting

 fullest use of internet resources in the management task.

 (3) The degree of management function that is remotely

 supported is accordingly increased, thereby imposing the

 fewest possible restrictions on the form and

 sophistication of management tools.

 (4) Simplified sets of management functions are easily

 understood and used by developers of network management

 tools.

 A second goal of the protocol is that the functional paradigm for

 monitoring and control be sufficiently extensible to accommodate

 additional, possibly unanticipated aspects of network operation and

 management.

 A third goal is that the architecture be, as much as possible,

 independent of the architecture and mechanisms of particular hosts or

 particular gateways.

3.2. Elements of the Architecture

 The SNMP architecture articulates a solution to the network

 management problem in terms of:

Case, Fedor, Schoffstall, & Davin [Page 4]

�

RFC 1067 SNMP August 1988

 (1) the scope of the management information communicated by

 the protocol,

 (2) the representation of the management information

 communicated by the protocol,

 (3) operations on management information supported by the

 protocol,

 (4) the form and meaning of exchanges among management

 entities,

Page 4 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 (5) the definition of administrative relationships among

 management entities, and

 (6) the form and meaning of references to management

 information.

3.2.1. Scope of Management Information

 The scope of the management information communicated by operation of

 the SNMP is exactly that represented by instances of all non-

 aggregate object types either defined in Internet-standard MIB or

 defined elsewhere according to the conventions set forth in

 Internet-standard SMI [2].

 Support for aggregate object types in the MIB is neither required for

 conformance with the SMI nor realized by the SNMP.

3.2.2. Representation of Management Information

 Management information communicated by operation of the SNMP is

 represented according to the subset of the ASN.1 language [6] that is

 specified for the definition of non-aggregate types in the SMI.

 The SGMP adopted the convention of using a well-defined subset of the

 ASN.1 language [6]. The SNMP continues and extends this tradition by

 utilizing a moderately more complex subset of ASN.1 for describing

 managed objects and for describing the protocol data units used for

 managing those objects. In addition, the desire to ease eventual

 transition to OSI-based network management protocols led to the

 definition in the ASN.1 language of an Internet-standard Structure of

 Management Information (SMI) [2] and Management Information Base

 (MIB) [3]. The use of the ASN.1 language, was, in part, encouraged

 by the successful use of ASN.1 in earlier efforts, in particular, the

 SGMP. The restrictions on the use of ASN.1 that are part of the SMI

 contribute to the simplicity espoused and validated by experience

 with the SGMP.

Case, Fedor, Schoffstall, & Davin [Page 5]

�

RFC 1067 SNMP August 1988

 Also for the sake of simplicity, the SNMP uses only a subset of the

 basic encoding rules of ASN.1 [7]. Namely, all encodings use the

 definite-length form. Further, whenever permissible, non-constructor

 encodings are used rather than constructor encodings. This

 restriction applies to all aspects of ASN.1 encoding, both for the

 top-level protocol data units and the data objects they contain.

3.2.3. Operations Supported on Management Information

 The SNMP models all management agent functions as alterations or

 inspections of variables. Thus, a protocol entity on a logically

 remote host (possibly the network element itself) interacts with the

 management agent resident on the network element in order to retrieve

 (get) or alter (set) variables. This strategy has at least two

 positive consequences:

Page 5 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 (1) It has the effect of limiting the number of essential

 management functions realized by the management agent to

 two: one operation to assign a value to a specified

 configuration or other parameter and another to retrieve

 such a value.

 (2) A second effect of this decision is to avoid introducing

 into the protocol definition support for imperative

 management commands: the number of such commands is in

 practice ever-increasing, and the semantics of such

 commands are in general arbitrarily complex.

 The strategy implicit in the SNMP is that the monitoring of network

 state at any significant level of detail is accomplished primarily by

 polling for appropriate information on the part of the monitoring

 center(s). A limited number of unsolicited messages (traps) guide

 the timing and focus of the polling. Limiting the number of

 unsolicited messages is consistent with the goal of simplicity and

 minimizing the amount of traffic generated by the network management

 function.

 The exclusion of imperative commands from the set of explicitly

 supported management functions is unlikely to preclude any desirable

 management agent operation. Currently, most commands are requests

 either to set the value of some parameter or to retrieve such a

 value, and the function of the few imperative commands currently

 supported is easily accommodated in an asynchronous mode by this

 management model. In this scheme, an imperative command might be

 realized as the setting of a parameter value that subsequently

 triggers the desired action. For example, rather than implementing a

 "reboot command," this action might be invoked by simply setting a

 parameter indicating the number of seconds until system reboot.

Case, Fedor, Schoffstall, & Davin [Page 6]

�

RFC 1067 SNMP August 1988

3.2.4. Form and Meaning of Protocol Exchanges

 The communication of management information among management entities

 is realized in the SNMP through the exchange of protocol messages.

 The form and meaning of those messages is defined below in Section 4.

 Consistent with the goal of minimizing complexity of the management

 agent, the exchange of SNMP messages requires only an unreliable

 datagram service, and every message is entirely and independently

 represented by a single transport datagram. While this document

 specifies the exchange of messages via the UDP protocol [8], the

 mechanisms of the SNMP are generally suitable for use with a wide

 variety of transport services.

3.2.5. Definition of Administrative Relationships

 The SNMP architecture admits a variety of administrative

 relationships among entities that participate in the protocol. The

 entities residing at management stations and network elements which

 communicate with one another using the SNMP are termed SNMP

Page 6 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 application entities. The peer processes which implement the SNMP,

 and thus support the SNMP application entities, are termed protocol

 entities.

 A pairing of an SNMP agent with some arbitrary set of SNMP

 application entities is called an SNMP community. Each SNMP

 community is named by a string of octets, that is called the

 community name for said community.

 An SNMP message originated by an SNMP application entity that in fact

 belongs to the SNMP community named by the community component of

 said message is called an authentic SNMP message. The set of rules

 by which an SNMP message is identified as an authentic SNMP message

 for a particular SNMP community is called an authentication scheme.

 An implementation of a function that identifies authentic SNMP

 messages according to one or more authentication schemes is called an

 authentication service.

 Clearly, effective management of administrative relationships among

 SNMP application entities requires authentication services that (by

 the use of encryption or other techniques) are able to identify

 authentic SNMP messages with a high degree of certainty. Some SNMP

 implementations may wish to support only a trivial authentication

 service that identifies all SNMP messages as authentic SNMP messages.

 For any network element, a subset of objects in the MIB that pertain

 to that element is called a SNMP MIB view. Note that the names of

 the object types represented in a SNMP MIB view need not belong to a

Case, Fedor, Schoffstall, & Davin [Page 7]

�

RFC 1067 SNMP August 1988

 single sub-tree of the object type name space.

 An element of the set { READ-ONLY, READ-WRITE } is called an SNMP

 access mode.

 A pairing of a SNMP access mode with a SNMP MIB view is called an

 SNMP community profile. A SNMP community profile represents

 specified access privileges to variables in a specified MIB view. For

 every variable in the MIB view in a given SNMP community profile,

 access to that variable is represented by the profile according to

 the following conventions:

 (1) if said variable is defined in the MIB with "Access:" of

 "none," it is unavailable as an operand for any operator;

 (2) if said variable is defined in the MIB with "Access:" of

 "read-write" or "write-only" and the access mode of the

 given profile is READ-WRITE, that variable is available

 as an operand for the get, set, and trap operations;

 (3) otherwise, the variable is available as an operand for

 the get and trap operations.

 (4) In those cases where a "write-only" variable is an

Page 7 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 operand used for the get or trap operations, the value

 given for the variable is implementation-specific.

 A pairing of a SNMP community with a SNMP community profile is called

 a SNMP access policy. An access policy represents a specified

 community profile afforded by the SNMP agent of a specified SNMP

 community to other members of that community. All administrative

 relationships among SNMP application entities are architecturally

 defined in terms of SNMP access policies.

 For every SNMP access policy, if the network element on which the

 SNMP agent for the specified SNMP community resides is not that to

 which the MIB view for the specified profile pertains, then that

 policy is called a SNMP proxy access policy. The SNMP agent

 associated with a proxy access policy is called a SNMP proxy agent.

 While careless definition of proxy access policies can result in

 management loops, prudent definition of proxy policies is useful in

 at least two ways:

 (1) It permits the monitoring and control of network elements

 which are otherwise not addressable using the management

 protocol and the transport protocol. That is, a proxy

 agent may provide a protocol conversion function allowing

 a management station to apply a consistent management

Case, Fedor, Schoffstall, & Davin [Page 8]

�

RFC 1067 SNMP August 1988

 framework to all network elements, including devices such

 as modems, multiplexors, and other devices which support

 different management frameworks.

 (2) It potentially shields network elements from elaborate

 access control policies. For example, a proxy agent may

 implement sophisticated access control whereby diverse

 subsets of variables within the MIB are made accessible

 to different management stations without increasing the

 complexity of the network element.

 By way of example, Figure 1 illustrates the relationship between

 management stations, proxy agents, and management agents. In this

 example, the proxy agent is envisioned to be a normal Internet

 Network Operations Center (INOC) of some administrative domain which

 has a standard managerial relationship with a set of management

 agents.

Page 8 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

Case, Fedor, Schoffstall, & Davin [Page 9]

�

RFC 1067 SNMP August 1988

 +------------------+ +----------------+ +----------------+

 | Region #1 INOC | |Region #2 INOC | |PC in Region #3 |

 | | | | | |

 |Domain=Region #1 | |Domain=Region #2| |Domain=Region #3|

 |CPU=super-mini-1 | |CPU=super-mini-1| |CPU=Clone-1 |

 |PCommunity=pub | |PCommunity=pub | |PCommunity=slate|

 | | | | | |

 +------------------+ +----------------+ +----------------+

 /|\ /|\ /|\

 | | |

 | | |

 | \|/ |

 | +-----------------+ |

 +-------------->| Region #3 INOC |<-------------+

 | |

 |Domain=Region #3 |

 |CPU=super-mini-2 |

 |PCommunity=pub, |

 | slate |

 |DCommunity=secret|

 +-------------->| |<-------------+

 | +-----------------+ |

 | /|\ |

 | | |

 | | |

 \|/ \|/ \|/

 +-----------------+ +-----------------+ +-----------------+

 |Domain=Region#3 | |Domain=Region#3 | |Domain=Region#3 |

 |CPU=router-1 | |CPU=mainframe-1 | |CPU=modem-1 |

 |DCommunity=secret| |DCommunity=secret| |DCommunity=secret|

 +-----------------+ +-----------------+ +-----------------+

Page 9 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 Domain: the administrative domain of the element

 PCommunity: the name of a community utilizing a proxy agent

 DCommunity: the name of a direct community

 Figure 1

 Example Network Management Configuration

Case, Fedor, Schoffstall, & Davin [Page 10]

�

RFC 1067 SNMP August 1988

3.2.6. Form and Meaning of References to Managed Objects

 The SMI requires that the definition of a conformant management

 protocol address:

 (1) the resolution of ambiguous MIB references,

 (2) the resolution of MIB references in the presence multiple

 MIB versions, and

 (3) the identification of particular instances of object

 types defined in the MIB.

3.2.6.1. Resolution of Ambiguous MIB References

 Because the scope of any SNMP operation is conceptually confined to

 objects relevant to a single network element, and because all SNMP

 references to MIB objects are (implicitly or explicitly) by unique

 variable names, there is no possibility that any SNMP reference to

 any object type defined in the MIB could resolve to multiple

 instances of that type.

3.2.6.2. Resolution of References across MIB Versions

 The object instance referred to by any SNMP operation is exactly that

 specified as part of the operation request or (in the case of a get-

 next operation) its immediate successor in the MIB as a whole. In

 particular, a reference to an object as part of some version of the

 Internet-standard MIB does not resolve to any object that is not part

 of said version of the Internet-standard MIB, except in the case that

 the requested operation is get-next and the specified object name is

 lexicographically last among the names of all objects presented as

 part of said version of the Internet-Standard MIB.

3.2.6.3. Identification of Object Instances

Page 10 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 The names for all object types in the MIB are defined explicitly

 either in the Internet-standard MIB or in other documents which

 conform to the naming conventions of the SMI. The SMI requires that

 conformant management protocols define mechanisms for identifying

 individual instances of those object types for a particular network

 element.

 Each instance of any object type defined in the MIB is identified in

 SNMP operations by a unique name called its "variable name." In

 general, the name of an SNMP variable is an OBJECT IDENTIFIER of the

 form x.y, where x is the name of a non-aggregate object type defined

 in the MIB and y is an OBJECT IDENTIFIER fragment that, in a way

Case, Fedor, Schoffstall, & Davin [Page 11]

�

RFC 1067 SNMP August 1988

 specific to the named object type, identifies the desired instance.

 This naming strategy admits the fullest exploitation of the semantics

 of the GetNextRequest-PDU (see Section 4), because it assigns names

 for related variables so as to be contiguous in the lexicographical

 ordering of all variable names known in the MIB.

 The type-specific naming of object instances is defined below for a

 number of classes of object types. Instances of an object type to

 which none of the following naming conventions are applicable are

 named by OBJECT IDENTIFIERs of the form x.0, where x is the name of

 said object type in the MIB definition.

 For example, suppose one wanted to identify an instance of the

 variable sysDescr The object class for sysDescr is:

 iso org dod internet mgmt mib system sysDescr

 1 3 6 1 2 1 1 1

 Hence, the object type, x, would be 1.3.6.1.2.1.1.1 to which is

 appended an instance sub-identifier of 0. That is, 1.3.6.1.2.1.1.1.0

 identifies the one and only instance of sysDescr.

3.2.6.3.1. ifTable Object Type Names

 The name of a subnet interface, s, is the OBJECT IDENTIFIER value of

 the form i, where i has the value of that instance of the ifIndex

 object type associated with s.

 For each object type, t, for which the defined name, n, has a prefix

 of ifEntry, an instance, i, of t is named by an OBJECT IDENTIFIER of

 the form n.s, where s is the name of the subnet interface about which

 i represents information.

 For example, suppose one wanted to identify the instance of the

 variable ifType associated with interface 2. Accordingly, ifType.2

 would identify the desired instance.

3.2.6.3.2. atTable Object Type Names

Page 11 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 The name of an AT-cached network address, x, is an OBJECT IDENTIFIER

 of the form 1.a.b.c.d, where a.b.c.d is the value (in the familiar

 "dot" notation) of the atNetAddress object type associated with x.

 The name of an address translation equivalence e is an OBJECT

 IDENTIFIER value of the form s.w, such that s is the value of that

 instance of the atIndex object type associated with e and such that w

 is the name of the AT-cached network address associated with e.

Case, Fedor, Schoffstall, & Davin [Page 12]

�

RFC 1067 SNMP August 1988

 For each object type, t, for which the defined name, n, has a prefix

 of atEntry, an instance, i, of t is named by an OBJECT IDENTIFIER of

 the form n.y, where y is the name of the address translation

 equivalence about which i represents information.

 For example, suppose one wanted to find the physical address of an

 entry in the address translation table (ARP cache) associated with an

 IP address of 89.1.1.42 and interface 3. Accordingly,

 atPhysAddress.3.1.89.1.1.42 would identify the desired instance.

3.2.6.3.3. ipAddrTable Object Type Names

 The name of an IP-addressable network element, x, is the OBJECT

 IDENTIFIER of the form a.b.c.d such that a.b.c.d is the value (in the

 familiar "dot" notation) of that instance of the ipAdEntAddr object

 type associated with x.

 For each object type, t, for which the defined name, n, has a prefix

 of ipAddrEntry, an instance, i, of t is named by an OBJECT IDENTIFIER

 of the form n.y, where y is the name of the IP-addressable network

 element about which i represents information.

 For example, suppose one wanted to find the network mask of an entry

 in the IP interface table associated with an IP address of 89.1.1.42.

 Accordingly, ipAdEntNetMask.89.1.1.42 would identify the desired

 instance.

3.2.6.3.4. ipRoutingTable Object Type Names

 The name of an IP route, x, is the OBJECT IDENTIFIER of the form

 a.b.c.d such that a.b.c.d is the value (in the familiar "dot"

 notation) of that instance of the ipRouteDest object type associated

 with x.

 For each object type, t, for which the defined name, n, has a prefix

 of ipRoutingEntry, an instance, i, of t is named by an OBJECT

 IDENTIFIER of the form n.y, where y is the name of the IP route about

 which i represents information.

 For example, suppose one wanted to find the next hop of an entry in

 the IP routing table associated with the destination of 89.1.1.42.

 Accordingly, ipRouteNextHop.89.1.1.42 would identify the desired

 instance.

Page 12 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

3.2.6.3.5. tcpConnTable Object Type Names

 The name of a TCP connection, x, is the OBJECT IDENTIFIER of the form

 a.b.c.d.e.f.g.h.i.j such that a.b.c.d is the value (in the familiar

Case, Fedor, Schoffstall, & Davin [Page 13]

�

RFC 1067 SNMP August 1988

 "dot" notation) of that instance of the tcpConnLocalAddress object

 type associated with x and such that f.g.h.i is the value (in the

 familiar "dot" notation) of that instance of the tcpConnRemoteAddress

 object type associated with x and such that e is the value of that

 instance of the tcpConnLocalPort object type associated with x and

 such that j is the value of that instance of the tcpConnRemotePort

 object type associated with x.

 For each object type, t, for which the defined name, n, has a prefix

 of tcpConnEntry, an instance, i, of t is named by an OBJECT

 IDENTIFIER of the form n.y, where y is the name of the TCP connection

 about which i represents information.

 For example, suppose one wanted to find the state of a TCP connection

 between the local address of 89.1.1.42 on TCP port 21 and the remote

 address of 10.0.0.51 on TCP port 2059. Accordingly,

 tcpConnState.89.1.1.42.21.10.0.0.51.2059 would identify the desired

 instance.

3.2.6.3.6. egpNeighTable Object Type Names

 The name of an EGP neighbor, x, is the OBJECT IDENTIFIER of the form

 a.b.c.d such that a.b.c.d is the value (in the familiar "dot"

 notation) of that instance of the egpNeighAddr object type associated

 with x.

 For each object type, t, for which the defined name, n, has a prefix

 of egpNeighEntry, an instance, i, of t is named by an OBJECT

 IDENTIFIER of the form n.y, where y is the name of the EGP neighbor

 about which i represents information.

 For example, suppose one wanted to find the neighbor state for the IP

 address of 89.1.1.42. Accordingly, egpNeighState.89.1.1.42 would

 identify the desired instance.

Page 13 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

Case, Fedor, Schoffstall, & Davin [Page 14]

�

RFC 1067 SNMP August 1988

4. Protocol Specification

 The network management protocol is an application protocol by which

 the variables of an agent's MIB may be inspected or altered.

 Communication among protocol entities is accomplished by the exchange

 of messages, each of which is entirely and independently represented

 within a single UDP datagram using the basic encoding rules of ASN.1

 (as discussed in Section 3.2.2). A message consists of a version

 identifier, an SNMP community name, and a protocol data unit (PDU).

 A protocol entity receives messages at UDP port 161 on the host with

 which it is associated for all messages except for those which report

 traps (i.e., all messages except those which contain the Trap-PDU).

 Messages which report traps should be received on UDP port 162 for

 further processing. An implementation of this protocol need not

 accept messages whose length exceeds 484 octets. However, it is

 recommended that implementations support larger datagrams whenever

 feasible.

 It is mandatory that all implementations of the SNMP support the five

 PDUs: GetRequest-PDU, GetNextRequest-PDU, GetResponse-PDU,

 SetRequest-PDU, and Trap-PDU.

 RFC1067-SNMP DEFINITIONS ::= BEGIN

 IMPORTS

 ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks

 FROM RFC1065-SMI;

 -- top-level message

 Message ::=

 SEQUENCE {

 version -- version-1 for this RFC

 INTEGER {

 version-1(0)

 },

 community -- community name

 OCTET STRING,

 data -- e.g., PDUs if trivial

 ANY -- authentication is being used

 }

Case, Fedor, Schoffstall, & Davin [Page 15]

Page 14 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

�

RFC 1067 SNMP August 1988

 -- protocol data units

 PDUs ::=

 CHOICE {

 get-request

 GetRequest-PDU,

 get-next-request

 GetNextRequest-PDU,

 get-response

 GetResponse-PDU,

 set-request

 SetRequest-PDU,

 trap

 Trap-PDU

 }

 -- the individual PDUs and commonly used

 -- data types will be defined later

 END

4.1. Elements of Procedure

 This section describes the actions of a protocol entity implementing

 the SNMP. Note, however, that it is not intended to constrain the

 internal architecture of any conformant implementation.

 In the text that follows, the term transport address is used. In the

 case of the UDP, a transport address consists of an IP address along

 with a UDP port. Other transport services may be used to support the

 SNMP. In these cases, the definition of a transport address should

 be made accordingly.

 The top-level actions of a protocol entity which generates a message

 are as follows:

 (1) It first constructs the appropriate PDU, e.g., the

 GetRequest-PDU, as an ASN.1 object.

 (2) It then passes this ASN.1 object along with a community

 name its source transport address and the destination

 transport address, to the service which implements the

 desired authentication scheme. This authentication

Case, Fedor, Schoffstall, & Davin [Page 16]

�

RFC 1067 SNMP August 1988

Page 15 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 service returns another ASN.1 object.

 (3) The protocol entity then constructs an ASN.1 Message

 object, using the community name and the resulting ASN.1

 object.

 (4) This new ASN.1 object is then serialized, using the basic

 encoding rules of ASN.1, and then sent using a transport

 service to the peer protocol entity.

 Similarly, the top-level actions of a protocol entity which receives

 a message are as follows:

 (1) It performs a rudimentary parse of the incoming datagram

 to build an ASN.1 object corresponding to an ASN.1

 Message object. If the parse fails, it discards the

 datagram and performs no further actions.

 (2) It then verifies the version number of the SNMP message.

 If there is a mismatch, it discards the datagram and

 performs no further actions.

 (3) The protocol entity then passes the community name and

 user data found in the ASN.1 Message object, along with

 the datagram's source and destination transport addresses

 to the service which implements the desired

 authentication scheme. This entity returns another ASN.1

 object, or signals an authentication failure. In the

 latter case, the protocol entity notes this failure,

 (possibly) generates a trap, and discards the datagram

 and performs no further actions.

 (4) The protocol entity then performs a rudimentary parse on

 the ASN.1 object returned from the authentication service

 to build an ASN.1 object corresponding to an ASN.1 PDUs

 object. If the parse fails, it discards the datagram and

 performs no further actions. Otherwise, using the named

 SNMP community, the appropriate profile is selected, and

 the PDU is processed accordingly. If, as a result of

 this processing, a message is returned then the source

 transport address that the response message is sent from

 shall be identical to the destination transport address

 that the original request message was sent to.

Case, Fedor, Schoffstall, & Davin [Page 17]

�

RFC 1067 SNMP August 1988

4.1.1. Common Constructs

 Before introducing the six PDU types of the protocol, it is

 appropriate to consider some of the ASN.1 constructs used frequently:

Page 16 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 -- request/response information

 RequestID ::=

 INTEGER

 ErrorStatus ::=

 INTEGER {

 noError(0),

 tooBig(1),

 noSuchName(2),

 badValue(3),

 readOnly(4)

 genErr(5)

 }

 ErrorIndex ::=

 INTEGER

 -- variable bindings

 VarBind ::=

 SEQUENCE {

 name

 ObjectName,

 value

 ObjectSyntax

 }

 VarBindList ::=

 SEQUENCE OF

 VarBind

 RequestIDs are used to distinguish among outstanding requests. By

 use of the RequestID, an SNMP application entity can correlate

 incoming responses with outstanding requests. In cases where an

 unreliable datagram service is being used, the RequestID also

 provides a simple means of identifying messages duplicated by the

 network.

 A non-zero instance of ErrorStatus is used to indicate that an

Case, Fedor, Schoffstall, & Davin [Page 18]

�

RFC 1067 SNMP August 1988

 exception occurred while processing a request. In these cases,

 ErrorIndex may provide additional information by indicating which

 variable in a list caused the exception.

 The term variable refers to an instance of a managed object. A

 variable binding, or VarBind, refers to the pairing of the name of a

 variable to the variable's value. A VarBindList is a simple list of

 variable names and corresponding values. Some PDUs are concerned

Page 17 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 only with the name of a variable and not its value (e.g., the

 GetRequest-PDU). In this case, the value portion of the binding is

 ignored by the protocol entity. However, the value portion must

 still have valid ASN.1 syntax and encoding. It is recommended that

 the ASN.1 value NULL be used for the value portion of such bindings.

4.1.2. The GetRequest-PDU

 The form of the GetRequest-PDU is:

 GetRequest-PDU ::=

 [0]

 IMPLICIT SEQUENCE {

 request-id

 RequestID,

 error-status -- always 0

 ErrorStatus,

 error-index -- always 0

 ErrorIndex,

 variable-bindings

 VarBindList

 }

 The GetRequest-PDU is generated by a protocol entity only at the

 request of its SNMP application entity.

 Upon receipt of the GetRequest-PDU, the receiving protocol entity

 responds according to any applicable rule in the list below:

 (1) If, for any object named in the variable-bindings field,

 the object's name does not exactly match the name of some

 object available for get operations in the relevant MIB

 view, then the receiving entity sends to the originator

 of the received message the GetResponse-PDU of identical

 form, except that the value of the error-status field is

 noSuchName, and the value of the error-index field is the

 index of said object name component in the received

Case, Fedor, Schoffstall, & Davin [Page 19]

�

RFC 1067 SNMP August 1988

 message.

 (2) If, for any object named in the variable-bindings field,

 the object is an aggregate type (as defined in the SMI),

 then the receiving entity sends to the originator of the

 received message the GetResponse-PDU of identical form,

 except that the value of the error-status field is

 noSuchName, and the value of the error-index field is the

 index of said object name component in the received

 message.

 (3) If the size of the GetResponse-PDU generated as described

Page 18 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 below would exceed a local limitation, then the receiving

 entity sends to the originator of the received message

 the GetResponse-PDU of identical form, except that the

 value of the error-status field is tooBig, and the value

 of the error-index field is zero.

 (4) If, for any object named in the variable-bindings field,

 the value of the object cannot be retrieved for reasons

 not covered by any of the foregoing rules, then the

 receiving entity sends to the originator of the received

 message the GetResponse-PDU of identical form, except

 that the value of the error-status field is genErr and

 the value of the error-index field is the index of said

 object name component in the received message.

 If none of the foregoing rules apply, then the receiving protocol

 entity sends to the originator of the received message the

 GetResponse-PDU such that, for each object named in the variable-

 bindings field of the received message, the corresponding component

 of the GetResponse-PDU represents the name and value of that

 variable. The value of the error- status field of the GetResponse-

 PDU is noError and the value of the error-index field is zero. The

 value of the request-id field of the GetResponse-PDU is that of the

 received message.

4.1.3. The GetNextRequest-PDU

 The form of the GetNextRequest-PDU is identical to that of the

 GetRequest-PDU except for the indication of the PDU type. In the

 ASN.1 language:

 GetNextRequest-PDU ::=

 [1]

 IMPLICIT SEQUENCE {

 request-id

 RequestID,

Case, Fedor, Schoffstall, & Davin [Page 20]

�

RFC 1067 SNMP August 1988

 error-status -- always 0

 ErrorStatus,

 error-index -- always 0

 ErrorIndex,

 variable-bindings

 VarBindList

 }

 The GetNextRequest-PDU is generated by a protocol entity only at the

 request of its SNMP application entity.

 Upon receipt of the GetNextRequest-PDU, the receiving protocol entity

 responds according to any applicable rule in the list below:

Page 19 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 (1) If, for any object name in the variable-bindings field,

 that name does not lexicographically precede the name of

 some object available for get operations in the relevant

 MIB view, then the receiving entity sends to the

 originator of the received message the GetResponse-PDU of

 identical form, except that the value of the error-status

 field is noSuchName, and the value of the error-index

 field is the index of said object name component in the

 received message.

 (2) If the size of the GetResponse-PDU generated as described

 below would exceed a local limitation, then the receiving

 entity sends to the originator of the received message

 the GetResponse-PDU of identical form, except that the

 value of the error-status field is tooBig, and the value

 of the error-index field is zero.

 (3) If, for any object named in the variable-bindings field,

 the value of the lexicographical successor to the named

 object cannot be retrieved for reasons not covered by any

 of the foregoing rules, then the receiving entity sends

 to the originator of the received message the

 GetResponse-PDU of identical form, except that the value

 of the error-status field is genErr and the value of the

 error-index field is the index of said object name

 component in the received message.

 If none of the foregoing rules apply, then the receiving protocol

 entity sends to the originator of the received message the

 GetResponse-PDU such that, for each name in the variable-bindings

 field of the received message, the corresponding component of the

Case, Fedor, Schoffstall, & Davin [Page 21]

�

RFC 1067 SNMP August 1988

 GetResponse-PDU represents the name and value of that object whose

 name is, in the lexicographical ordering of the names of all objects

 available for get operations in the relevant MIB view, together with

 the value of the name field of the given component, the immediate

 successor to that value. The value of the error-status field of the

 GetResponse-PDU is noError and the value of the errorindex field is

 zero. The value of the request-id field of the GetResponse-PDU is

 that of the received message.

4.1.3.1. Example of Table Traversal

 One important use of the GetNextRequest-PDU is the traversal of

 conceptual tables of information within the MIB. The semantics of

 this type of SNMP message, together with the protocol-specific

 mechanisms for identifying individual instances of object types in

 the MIB, affords access to related objects in the MIB as if they

 enjoyed a tabular organization.

 By the SNMP exchange sketched below, an SNMP application entity might

 extract the destination address and next hop gateway for each entry

Page 20 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 in the routing table of a particular network element. Suppose that

 this routing table has three entries:

 Destination NextHop Metric

 10.0.0.99 89.1.1.42 5

 9.1.2.3 99.0.0.3 3

 10.0.0.51 89.1.1.42 5

 The management station sends to the SNMP agent a GetNextRequest-PDU

 containing the indicated OBJECT IDENTIFIER values as the requested

 variable names:

 GetNextRequest (ipRouteDest, ipRouteNextHop, ipRouteMetric1)

 The SNMP agent responds with a GetResponse-PDU:

 GetResponse ((ipRouteDest.9.1.2.3 = "9.1.2.3"),

 (ipRouteNextHop.9.1.2.3 = "99.0.0.3"),

 (ipRouteMetric1.9.1.2.3 = 3))

 The management station continues with:

 GetNextRequest (ipRouteDest.9.1.2.3,

 ipRouteNextHop.9.1.2.3,

Case, Fedor, Schoffstall, & Davin [Page 22]

�

RFC 1067 SNMP August 1988

 ipRouteMetric1.9.1.2.3)

 The SNMP agent responds:

 GetResponse ((ipRouteDest.10.0.0.51 = "10.0.0.51"),

 (ipRouteNextHop.10.0.0.51 = "89.1.1.42"),

 (ipRouteMetric1.10.0.0.51 = 5))

 The management station continues with:

 GetNextRequest (ipRouteDest.10.0.0.51,

 ipRouteNextHop.10.0.0.51,

 ipRouteMetric1.10.0.0.51)

 The SNMP agent responds:

 GetResponse ((ipRouteDest.10.0.0.99 = "10.0.0.99"),

 (ipRouteNextHop.10.0.0.99 = "89.1.1.42"),

 (ipRouteMetric1.10.0.0.99 = 5))

Page 21 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 The management station continues with:

 GetNextRequest (ipRouteDest.10.0.0.99,

 ipRouteNextHop.10.0.0.99,

 ipRouteMetric1.10.0.0.99)

 As there are no further entries in the table, the SNMP agent returns

 those objects that are next in the lexicographical ordering of the

 known object names. This response signals the end of the routing

 table to the management station.

4.1.4. The GetResponse-PDU

 The form of the GetResponse-PDU is identical to that of the

 GetRequest-PDU except for the indication of the PDU type. In the

 ASN.1 language:

 GetResponse-PDU ::=

 [2]

 IMPLICIT SEQUENCE {

 request-id

 RequestID,

Case, Fedor, Schoffstall, & Davin [Page 23]

�

RFC 1067 SNMP August 1988

 error-status

 ErrorStatus,

 error-index

 ErrorIndex,

 variable-bindings

 VarBindList

 }

 The GetResponse-PDU is generated by a protocol entity only upon

 receipt of the GetRequest-PDU, GetNextRequest-PDU, or SetRequest-PDU,

 as described elsewhere in this document.

 Upon receipt of the GetResponse-PDU, the receiving protocol entity

 presents its contents to its SNMP application entity.

4.1.5. The SetRequest-PDU

 The form of the SetRequest-PDU is identical to that of the

 GetRequest-PDU except for the indication of the PDU type. In the

 ASN.1 language:

 SetRequest-PDU ::=

 [3]

 IMPLICIT SEQUENCE {

 request-id

Page 22 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 RequestID,

 error-status -- always 0

 ErrorStatus,

 error-index -- always 0

 ErrorIndex,

 variable-bindings

 VarBindList

 }

 The SetRequest-PDU is generated by a protocol entity only at the

 request of its SNMP application entity.

 Upon receipt of the SetRequest-PDU, the receiving entity responds

 according to any applicable rule in the list below:

 (1) If, for any object named in the variable-bindings field,

Case, Fedor, Schoffstall, & Davin [Page 24]

�

RFC 1067 SNMP August 1988

 the object is not available for set operations in the

 relevant MIB view, then the receiving entity sends to the

 originator of the received message the GetResponse-PDU of

 identical form, except that the value of the error-status

 field is noSuchName, and the value of the error-index

 field is the index of said object name component in the

 received message.

 (2) If, for any object named in the variable-bindings field,

 the contents of the value field does not, according to

 the ASN.1 language, manifest a type, length, and value

 that is consistent with that required for the variable,

 then the receiving entity sends to the originator of the

 received message the GetResponse-PDU of identical form,

 except that the value of the error-status field is

 badValue, and the value of the error-index field is the

 index of said object name in the received message.

 (3) If the size of the Get Response type message generated as

 described below would exceed a local limitation, then the

 receiving entity sends to the originator of the received

 message the GetResponse-PDU of identical form, except

 that the value of the error-status field is tooBig, and

 the value of the error-index field is zero.

 (4) If, for any object named in the variable-bindings field,

 the value of the named object cannot be altered for

 reasons not covered by any of the foregoing rules, then

 the receiving entity sends to the originator of the

 received message the GetResponse-PDU of identical form,

 except that the value of the error-status field is genErr

 and the value of the error-index field is the index of

Page 23 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 said object name component in the received message.

 If none of the foregoing rules apply, then for each object named in

 the variable-bindings field of the received message, the

 corresponding value is assigned to the variable. Each variable

 assignment specified by the SetRequest-PDU should be effected as if

 simultaneously set with respect to all other assignments specified in

 the same message.

 The receiving entity then sends to the originator of the received

 message the GetResponse-PDU of identical form except that the value

 of the error-status field of the generated message is noError and the

 value of the error-index field is zero.

Case, Fedor, Schoffstall, & Davin [Page 25]

�

RFC 1067 SNMP August 1988

4.1.6. The Trap-PDU

 The form of the Trap-PDU is:

 Trap-PDU ::=

 [4]

 IMPLICIT SEQUENCE {

 enterprise -- type of object generating

 -- trap, see sysObjectID in [2]

 OBJECT IDENTIFIER,

 agent-addr -- address of object generating

 NetworkAddress, -- trap

 generic-trap -- generic trap type

 INTEGER {

 coldStart(0),

 warmStart(1),

 linkDown(2),

 linkUp(3),

 authenticationFailure(4),

 egpNeighborLoss(5),

 enterpriseSpecific(6)

 },

 specific-trap -- specific code, present even

 INTEGER, -- if generic-trap is not

 -- enterpriseSpecific

 time-stamp -- time elapsed between the last

 TimeTicks, -- (re)initialization of the network

 -- entity and the generation of the

 trap

 variable-bindings -- "interesting" information

Page 24 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 VarBindList

 }

 The Trap-PDU is generated by a protocol entity only at the request of

 the SNMP application entity. The means by which an SNMP application

 entity selects the destination addresses of the SNMP application

 entities is implementation-specific.

 Upon receipt of the Trap-PDU, the receiving protocol entity presents

 its contents to its SNMP application entity.

Case, Fedor, Schoffstall, & Davin [Page 26]

�

RFC 1067 SNMP August 1988

 The significance of the variable-bindings component of the Trap-PDU

 is implementation-specific.

 Interpretations of the value of the generic-trap field are:

4.1.6.1. The coldStart Trap

 A coldStart(0) trap signifies that the sending protocol entity is

 reinitializing itself such that the agent's configuration or the

 protocol entity implementation may be altered.

4.1.6.2. The warmStart Trap

 A warmStart(1) trap signifies that the sending protocol entity is

 reinitializing itself such that neither the agent configuration nor

 the protocol entity implementation is altered.

4.1.6.3. The linkDown Trap

 A linkDown(2) trap signifies that the sending protocol entity

 recognizes a failure in one of the communication links represented in

 the agent's configuration.

 The Trap-PDU of type linkDown contains as the first element of its

 variable-bindings, the name and value of the ifIndex instance for the

 affected interface.

4.1.6.4. The linkUp Trap

 A linkUp(3) trap signifies that the sending protocol entity

 recognizes that one of the communication links represented in the

 agent's configuration has come up.

 The Trap-PDU of type linkUp contains as the first element of its

 variable-bindings, the name and value of the ifIndex instance for the

 affected interface.

4.1.6.5. The authenticationFailure Trap

 An authenticationFailure(4) trap signifies that the sending protocol

Page 25 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 entity is the addressee of a protocol message that is not properly

 authenticated. While implementations of the SNMP must be capable of

 generating this trap, they must also be capable of suppressing the

 emission of such traps via an implementation-specific mechanism.

4.1.6.6. The egpNeighborLoss Trap

 An egpNeighborLoss(5) trap signifies that an EGP neighbor for whom

Case, Fedor, Schoffstall, & Davin [Page 27]

�

RFC 1067 SNMP August 1988

 the sending protocol entity was an EGP peer has been marked down and

 the peer relationship no longer obtains.

 The Trap-PDU of type egpNeighborLoss contains as the first element of

 its variable-bindings, the name and value of the egpNeighAddr

 instance for the affected neighbor.

4.1.6.7. The enterpriseSpecific Trap

 A enterpriseSpecific(6) trap signifies that the sending protocol

 entity recognizes that some enterprise-specific event has occurred.

 The specific-trap field identifies the particular trap which

 occurred.

Page 26 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

Case, Fedor, Schoffstall, & Davin [Page 28]

�

RFC 1067 SNMP August 1988

5. Definitions

 RFC1067-SNMP DEFINITIONS ::= BEGIN

 IMPORTS

 ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks

 FROM RFC1065-SMI;

 -- top-level message

 Message ::=

 SEQUENCE {

 version -- version-1 for this RFC

 INTEGER {

 version-1(0)

 },

 community -- community name

 OCTET STRING,

 data -- e.g., PDUs if trivial

 ANY -- authentication is being used

 }

 -- protocol data units

 PDUs ::=

 CHOICE {

 get-request

 GetRequest-PDU,

 get-next-request

 GetNextRequest-PDU,

 get-response

 GetResponse-PDU,

 set-request

 SetRequest-PDU,

 trap

 Trap-PDU

 }

Page 27 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

Case, Fedor, Schoffstall, & Davin [Page 29]

�

RFC 1067 SNMP August 1988

 -- PDUs

 GetRequest-PDU ::=

 [0]

 IMPLICIT PDU

 GetNextRequest-PDU ::=

 [1]

 IMPLICIT PDU

 GetResponse-PDU ::=

 [2]

 IMPLICIT PDU

 SetRequest-PDU ::=

 [3]

 IMPLICIT PDU

 PDU ::=

 SEQUENCE {

 request-id

 INTEGER,

 error-status -- sometimes ignored

 INTEGER {

 noError(0),

 tooBig(1),

 noSuchName(2),

 badValue(3),

 readOnly(4),

 genErr(5)

 },

 error-index -- sometimes ignored

 INTEGER,

 variable-bindings -- values are sometimes ignored

 VarBindList

 }

 Trap-PDU ::=

 [4]

 IMPLICIT SEQUENCE {

 enterprise -- type of object generating

 -- trap, see sysObjectID in [2]

 OBJECT IDENTIFIER,

Case, Fedor, Schoffstall, & Davin [Page 30]

Page 28 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

�

RFC 1067 SNMP August 1988

 agent-addr -- address of object generating

 NetworkAddress, -- trap

 generic-trap -- generic trap type

 INTEGER {

 coldStart(0),

 warmStart(1),

 linkDown(2),

 linkUp(3),

 authenticationFailure(4),

 egpNeighborLoss(5),

 enterpriseSpecific(6)

 },

 specific-trap -- specific code, present even

 INTEGER, -- if generic-trap is not

 -- enterpriseSpecific

 time-stamp -- time elapsed between the last

 TimeTicks, -- (re)initialization of the

 network

 -- entity and the generation of the

 trap

 variable-bindings -- "interesting" information

 VarBindList

 }

 -- variable bindings

 VarBind ::=

 SEQUENCE {

 name

 ObjectName,

 value

 ObjectSyntax

 }

 VarBindList ::=

 SEQUENCE OF

 VarBind

 END

Case, Fedor, Schoffstall, & Davin [Page 31]

�

RFC 1067 SNMP August 1988

Page 29 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

6. Acknowledgements

 This memo was influenced by the IETF SNMP Extensions working

 group:

 Karl Auerbach, Epilogue Technology

 K. Ramesh Babu, Excelan

 Amatzia Ben-Artzi, 3Com/Bridge

 Lawrence Besaw, Hewlett-Packard

 Jeffrey D. Case, University of Tennessee at Knoxville

 Anthony Chung, Sytek

 James Davidson, The Wollongong Group

 James R. Davin, Proteon

 Mark S. Fedor, NYSERNet

 Phill Gross, The MITRE Corporation

 Satish Joshi, ACC

 Dan Lynch, Advanced Computing Environments

 Keith McCloghrie, The Wollongong Group

 Marshall T. Rose, The Wollongong Group (chair)

 Greg Satz, cisco

 Martin Lee Schoffstall, Rensselaer Polytechnic Institute

 Wengyik Yeong, NYSERNet

Case, Fedor, Schoffstall, & Davin [Page 32]

�

RFC 1067 SNMP August 1988

7. References

 [1] Cerf, V., "IAB Recommendations for the Development of

 Internet Network Management Standards", RFC 1052, IAB,

Page 30 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

 April 1988.

 [2] Rose, M., and K. McCloghrie, "Structure and Identification

 of Management Information for TCP/IP-based internets",

 RFC 1065, TWG, August 1988.

 [3] McCloghrie, K., and M. Rose, "Management Information Base

 for Network Management of TCP/IP-based internets",

 RFC 1066, TWG, August 1988.

 [4] Case, J., M. Fedor, M. Schoffstall, and J. Davin,

 "A Simple Network Management Protocol", Internet

 Engineering Task Force working note, Network Information

 Center, SRI International, Menlo Park, California,

 March 1988.

 [5] Davin, J., J. Case, M. Fedor, and M. Schoffstall,

 "A Simple Gateway Monitoring Protocol", RFC 1028,

 Proteon, University of Tennessee at Knoxville,

 Cornell University, and Rensselaer Polytechnic

 Institute, November 1987.

 [6] Information processing systems - Open Systems

 Interconnection, "Specification of Abstract Syntax

 Notation One (ASN.1)", International Organization for

 Standardization, International Standard 8824,

 December 1987.

 [7] Information processing systems - Open Systems

 Interconnection, "Specification of Basic Encoding Rules

 for Abstract Notation One (ASN.1)", International

 Organization for Standardization, International Standard

 8825, December 1987.

 [8] Postel, J., "User Datagram Protocol", RFC 768,

 USC/Information Sciences Institute, November 1980.

Case, Fedor, Schoffstall, & Davin [Page 33]

�

Page 31 of 31

9/12/2008http://www.ietf.org/rfc/rfc1067.txt

